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LETTER TO THE EDITOR 

On renormalisation of fluctuations at the onset of a centre 
manifold 
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Max-Planck-Institut fur Biophysikalische Chemie, Am Fassberg, Postfach 2841, 3400 
Gottingen, Federal Republic of Germanyt and Frick Laboratory, Princeton University, 
Princeton, NJ 08544, USA 

Received 28 March 1988 

Abstract. We consider a dissipative reactive system driven far from thermodynamic equili- 
brium and sustaining a locally attractive centre manifold beyond a symmetry-breaking 
instability. We derive a functional equation for the renormalised diffusion pressure. This 
coefficient gives autocorrelations for intrinsic fluctuations and depends on the bifurcation 
parameter. The system is subject to the following realistic restrictions. (i) The temporal 
organisation lying beyond the instability can be accounted for by the existence of a centre 
manifold. (ii) The effective equilibrium energy averaged with respect to the stationary 
distribution about the centre manifold is independent of the bifurcation parameter. 

Although the onset of dissipative structures in open reactors is relatively well understood 
at the level of phenomenological kinetics, the microscopic aspects of the cooperativity 
leading to the dominance of certain modes [ l ]  and the localisation of the reactive 
species [2] are far from clear. In spite of continuous efforts, essentially making use 
of renormalisation methods, to calculate non-equilibrium fluctuations, the results have 
not been conclusive in so far as the role of intrinsic fluctuations as triggers of organisa- 
tion in realistic situations remains elusive [3-51. Moreover, the implementation of 
renormalisation methods in symmetry-breaking transitions has been questioned on 
theoretical grounds [5]. The main objection has to do with the difficulty in showing 
that the intrinsic lengths in reaction-diff usion systems are independent of boundary 
conditions. The centre manifold (CM) scaling theory has been particularly successful 
in deriving the adequate random source term responsible for intrinsic fluctuations even 
in the case where the characteristic length is dependent on the boundary conditions, 
as in the case of the B6nard instability [6]. However, the same tools cannot be applied 
mutatis mutandis to open reactive systems unless an adjustable free parameter, the 
proportionality factor for the scaling of non-equilibrium fluctuations with the bifurca- 
tion parameter, is introduced [7,8]. This bifurcation parameter, denoted ‘U’, measures 
the departure from the critical point. The difficulty mentioned above can be circumven- 
ted if an additional restriction is included: in the spirit of Klimontovich’s approach 
[9,10], we shall introduce the realistic assumption that the effective equilibrium energy 
averaged with respect to the stationary distribution at the onset of a C M  is independent 
of U. We must point out here that under such circumstances, the entropy of the 
self-organising system gives a measure of the order. In general, this is not the case 
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unless the mean energy is fixed [9,10]. The general derivation presented in this paper 
is useful in planning for experiments of time-dependent fluctuation spectroscopy aimed 
at determining non-classical critical exponents. Such experiments are in the spirit of 
those leading to the elucidation of the stochastic source in the transition to convective 
structures [ 6 ] .  

The existence of a locally attractive and locally invariant CM in a neighbourhood 
of criticality is a special case of the subordination of fast-relaxing modes, X,, to the 
critical modes, Xsi. The dissipative structure emerging beyond the instability is con- 
tained in the CM and the cooperativity effects leading to fluctuations in the collective 
modes reflect themselves in the confinement of the probability densityf=f(X,, Xr, U )  = 
f(X, U )  to a narrow strip about the CM. The Gaussian width of this strip, w, is a 
function of u and, to first approximation, independent of the position on the CM. This 
width is determined from the adequate competition between the drift towards the CM 

and the diffusion pressure caused by fluctuations. The fluctuation correlation C = C( t i )  
can be identified with the effective diffusion coefficient. The CM scaling theory requires 
that the effective diffusion coefficient C be renormalised, that is, C = C(u) .  This theory 
successfully gives the critical exponents. However, the exact derivation of the fluctu- 
ation-correlation function becomes in general hopelessly complicated [9, IO]. Thus, 
we shall implement a renormalisation approach subject to the restriction that the 
average of certain specific functional R = R(X) with respect to f(X, U )  is a constant: 

(1) 
d 

d u  
- (R)  = 0. 

In a realistic situation, this functional is taken to be the effective equilibrium energy 
of the system (an explicit expression will be given later) [9, IO]. 

The starting point in our analysis is the factorisation off in the following form [6-81: 

where the factors Qj represent the conditional probability and they determine the 
statistical subordination of the fast-relaxing degrees of freedom Xrj to the order 
parameters X5i. The remaining factor on the R H S  is a Dirac delta distribution peaked 
at the stationary state for the smeared evolution equation in order parameter space. 
It should be emphasised that the order parameters are viewed as the CM coordinates. 
The factors Qj have the form: 

where 

Here Ai(u) denotes the damping constant for the fast-relaxing degree of freedom X,, 
Xrj = Xfj(Xs) is the CM equation and A, accounts for portion of probability shifted 
due to the departure from the critical point. The CM equation has the general form: 

m 

Xrj = gfj = do (, , n , , xt;x22.. . x?~) 
i = 2  i 1 + i 2 + , , , i - ~ N = i  

where the CM coefficients d ,  are determined from the implicit set of equations [7,8]. 
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The probability distribution defined via the Aj adopts the form of a Gaussian 
peaked at the CM. The Gaussian widths wj = wj(u)  are, to first approximation, given 
by: ( C ( U ) / ~ ~ ( U ) ) " ~ =  wj(u) ;  i.e. they are given by the competition between the drift 
towards the CM and the diffusive pressure given by the intrinsic fluctuations. The 
second term in (4) adopts the general form 

with 

g2J(u)  = A J ( o ) - A J ( u )  

gl, ( U = 23fj  ( x s s (  ) A j  ( 24) - 23fj  (Xqs(0) )AJ (0) ( 9 )  

= A J ( 0 ) z ; J ( x S S ( O ) )  - A J ( u ) ' ; J ( x S S ( u ) ) *  

In order to evaluate C (  U )  explicitly, our probability distribution f is subject to the 
condition I (c A o J ) f  dX = (independent of U). (10) 

This condition corresponds to fixed averaged effective equilibrium free energy 

Making use of the fact that f is normalised for every value of U in a neighbourhood 
of the critical point, we obtain 

where 

From equations (10) to (12), we obtain 
2 

d X ( ~ A o j ) f [ Z  J ( c  i = O  h i i X ~ j + ~ A j ( u ) i ( A 2 X f j ( u ) ) ]  C ( U )  = O  (14) 

where we have introduced the simplifying notation AG = G - ( G )  for any arbitrary 
functional G. 

Making use of the explicit expression for A,, as given in equation ( 5 ) ,  we obtain 
from equation (14) the following functional differential equation for C (  U): 

(15) C'( u ) F (  U, C (  U)) + C (  u ) H (  U, C( U)) = 0 

F (  U, C (U )) = A k  (U )(AzXfk ( O ) ~ A ' X ~ j ( U ) )  (16) 

with 

j .  k 
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We need to warn the reader that (15) is not an ordinary differential equation for 
C ( u )  since an average of the form (G) is always a functional of C ( u ) .  

Thus, C( U )  satisfies the following functional integral equation: 

C(U)  = UC(U)) (18) 

where 

The solution of equations (18) and (19) can be constructed for a specific case by 
noting that it is given by the limit of the convergent sequence of functions { CJ(u)}J=l , . , . .  
This sequence is defined inductively, by the following recursive relation: 

C,+l(U) = UC,(U)). (20) 

The first step in the induction process consists of defining C , ( u ) .  This poses no 
additional problems since the CM reduction introduces, to first approximation, scaling 
laws of the form C l ( u ) - u a .  For example, in the case of a Hopf instability, a = 2 .  
The proportionality factor is an adjustable parameter. 

Thus, once the initial gauge has been made, the solution can be constructed 
recursively and it will be parametrically dependent on the proportionality factor for 
the CM scaling. At this point it should be stressed that this is a rigorous derivation of 
the fluctuation autocorrelations under non-equilibrium conditions in a self-organising 
system. In a forthcoming publication, this recursive method will be implemented to 
derive the stochastic source in the transition to a convective structure [ 6 ]  and to make 
comparisons vis-a-vis the experimental findings. The CM scaling approach has already 
given very satisfactory agreement in this case but an analytical expFession has never 
been obtained. 
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